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CHAPTER 1

Introduction

The aim of this book is to present new theoretical results and ap-
plications concerning majorization theory.

Majorization tools and convex-concave arguments are used in order
to study some optimization problems related to equilibrium problems,
min-max theory and fixed point theory in a very general settings. We
point out the relevance of these areas in the framework of applied math-
ematics, where the intersections between different research subjects and
topics are numerous.

The possibility to use some convex analysis tools (majorization,
convexity-concavity, min-max inequalities, equilibrium problems and
fixed point theory) to treat some optimization problems (data rates in
networks, traffic strikes, nonlinear optimization) is actual and modern.

Speaking about the optimization problems, we study some opti-
mization properties revealed by convex analysis tools, in order to be
applied in different areas of research. We study such optimization prob-
lems from an applied point of view, such as modeling communication
networks and design of communication systems.

The possibility to use convex analysis in optimizations problems has
been increased vigorously and such activity had a great influence on
other areas of science. Convex analysis has grown in connection with
the study of problems of optimization, equilibrium, control and sta-
bility of linear and nonlinear systems. These mathematical disciplines
have no border and they rather have good effects on each other.

The concept of majorization appears in 1905, when Max Lorenz
propose a graphical way to model the social differences in a finite pop-
ulation. Later on, Dalton (1920) and Hardy-Littlewood-Polya (1927,
1934), reveal some optimization properties, which led to the notion
of Schur-convex function. Applications of majorization in 4G commu-
nications networks, are related to data transmission rates with huge
dimensions, where the interferences between different links create a
strangulations of data transmission rates.

An important amelioration was obtained when the optimal power
distribution is studied as a nonlinear optimization problem, non-convex
with constraints. The problem was solved by the identification of a
Schur-convex structure in the objective function. It can be shown that
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8 1. INTRODUCTION

the optimal power allocation is binary, in a sense that, the data are
sent with maximal power or the data transmission is not allowed.

From this point of view, the results in literature are related to our
results in the field of control theory. Our aim is to use our experience in
the field of convex analysis, with special emphasize to the majorization
concept and min-max inequalities, in order to obtain new optimal op-
erating principles for some communications devices used in intelligent
traffic lights.

The second approach of the optimization problems consists of a
more theoretically point of view and deals with the study of min-max
inequalities, equilibrium problems, weak majorization concepts in the
context of metric spaces with global non-positive curvature (denoted
global NPC spaces). Besides Hilbert spaces and manifolds, other im-
portant examples of global NPC spaces are the Bruhat-Tits buildings
[84] (in particular, the trees). We mention that, Ky-Fan’s inequality,
Schauder’s and Schaeffer’s fixed point theorems and Hardy-Littlewood-
Polya’s majorization theorem have been extended to the context of
global NPC spaces.

On the other hand, a new type of weak majorization is introduced
and discussed in the present book. The subject of majorization in
global NPC spaces was successfully studied using some ideas inspired
from very recently research papers. Our aim is to extend and to use
the weak majorization concept properties to the trees (which should
model the optimal distribution in communication networks with high
performances).

Other significant idea in this area is given by the objective which
consists of defining a new weaker concept of point of Schur-convexity,
inspired by the notion of point of convexity. The notion of point of
convexity may be used in such a way to prove Ky-Fan’s min-max type
inequalities and fixed point theorems for weaker assumptions which
involves the convexity at a point, even in the context of global NPC
spaces.

Notice that some weaker or generalized types of convexity were suc-
cessfully used in the study of existence and uniqueness of solutions of
partial differential equations. In order to establish a sufficient condi-
tion for the existence of finite time blow-up solutions for an evolution-
ary problem, arising naturally in mechanics, biology and population
dynamics, we introduced a new class of generalized convex functions
[63, 66]. In this context, it is interesting to study the implications pro-
duced by the concept of point of convexity (convex-concave functions)
in the study of existence and uniqueness of solutions for some partial
differential equations.

By using the concept of majorization recently introduced in global
NPC spaces another aim is to characterize the convex functions on



1. INTRODUCTION 9

the trees and to study the weak/strong majorization and the corre-
sponding convexity inequalities on trees. We intend to implement such
concepts on trees in order to obtain new optimality results concerning
data transfer rates of information.

The new concept of majorization can be compared with another
concept, which has relevant application on trees. On the other hand, it
was pointed out that the Baker-Ericksen inequalities can be rewritten
in terms of Schur-convexity, which are related to the concept of rank-
one convexity of an energy. In applications from nonlinear elasticity we
are dealing with different energies depending of the squared logarithm
function, which is neither convex nor concave.

Nevertheless, a Hardy-Littlewood-Polya’s type inequality holds in
the first three dimensions. One of our results is related to rank-one
convexity and polyconvexity of energies depending on the logarithmic
strain tensor. This properties together with the coercivity of the energy
allow us to obtain existence of the solution of the minimization problem
in any finite dimension.

We intend to prove the existence of solutions for equilibrium prob-
lems similar with the ones studied recently, but more powerful ones.
We will introduce a new concept of point of Schur-convexity in order
to obtain more general optimal type results.

By using our experience into this field we intend to highlight the
applicability of convex/concave results in PDE’s problems which study
the existence and multiplicity of solutions. More precisely, we will point
out the relevance of our weaker convexity conditions which allow the
concavity of the nonlinearity somewhere in the domain of definition, for
the study of PDE’s problems with nonlinearities which can be convex-
concave functions.

Note that the problem of optimal power control for multiuser vari-
able bit rate (VBR) video streaming in a cellular network with or-
thogonal channels can be also studied using majorization tools. The
deterministic model for VBR video traffic that incorporates video frame
and playout buffer characteristics cand be formulated as a constrained
stochastic optimization problem. Then it is developed a majorization-
based solution approach. For the case of a single VBR video session
with relaxed peak power constraint, it is developed a power optimal al-
gorithm with low complexity. It can be proved the power optimality of
the proposed algorithm and the uniqueness of the global optimum, and
demonstrate that the proposed algorithm is also smoothness optimal.

For the case of multiuser VBR video streaming, a heuristic algo-
rithm that selectively suspends some video sessions when the peak
power constraint is violated are studied. In addition to the traditional
VBR video streaming application, we can also consider the case of in-
teractive video streaming, and show that the proposed schemes can be
easily adapted and applied. The proposed algorithms are evaluated
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with trace-driven simulations, and are shown to achieve considerable
power savings and improved video quality over a conventional lazy
scheme.

The relevance of this book is a consequence of the fact that we shall
develop research in the modern and dynamic fields of optimization
and convex analysis which will increase the level of knowledge and
technology. Our results will lead to new insights into all the complex
physical models that are analyzed and may offer to the engineering and
IT community the possibility of imagining new and high-performance
optimized devices.

From the view point of convex analysis applied to optimization
problems we offer the possibility to the engineers to optimize the net-
works data rates in 4G networks and traffic strikes. Also, we shall
promote international scientific cooperation by integrating in this book
joint results with members from prestigious recognized research groups.

Part of this work was done during the author’s visit to Lehrstuhl
für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik,
Universität Duisburg-Essen, Campus Essen, Germany and he would
like to thank Patrizion Neff and Ionel Dumitrel Ghiba for their kind-
ness and warm hospitality. The author are also grateful to Professor
Constantin P. Niculescu, the main collaborator into the field of convex
analysis, for several interesting suggestions and comments.

The author was supported by the strategic grant POSDRU/159/1.5/
S/133255, Project ID 133255 (2014), cofinanced by the European So-
cial Fund within the Sectorial Operational Program Human Resources
Development 2007-2013.



CHAPTER 2

Preliminaries on majorization theory

In last years, a lot of papers was dedicated to majorization the-
ory, that was scattered in journals in a wide variety of fields. Indeed,
many majorization concepts had been reinvented and used in different
research areas, as Lorenz or dominance ordering in economics, opti-
mization and graph theory.

Whenever the solution of a problem involves a discrete uniform dis-
tribution, the idea of a majorization proof was intensively used. More-
over, if a uniform allocation or distribution was in a sense optimal, then
the concept of majorization frequently can be used to order allocations
or distributions.

Naturally extensions of the majorization concept are possible and
indeed many of them have been fruitfully introduced. The aim of this
paper is to introduce a new majorization concept, from which derives
multiple applications in different areas.

Let x = (x1, ..., xn), y = (y1, ..., yn) be two vectors from Rn.

Definition 1. We say that x is majorized by y, denote it by x ≺ y,
if the rearrangement of the components of x and y such that x[1] ≥
x[2] ≥ ... ≥ x[n], y[1] ≥ y[2] ≥ ... ≥ y[n] satisfy

∑k
i=1 x[i] ≤

∑k
i=1 y[i], (1 ≤

k ≤ n− 1) and
∑n

i=1 x[i] =
∑n

i=1 y[i].

The notion of Schur-convex function has been introduced by I.
Schur in 1923 and has interesting applications in analytic inequalities,
elementary quantum mechanics and quantum information theory. See
[53].

Definition 2. The function F : A → R, where A ⊂ Rn, is called
Schur-convex if x ≺ y implies F (x) ≤ F (y). Any such function F is
called Schur-concave if −F is Schur-convex.

An important source of Schur-convex functions can be found in
Merkle [57]. Guan [36, 37] prove that all symmetric elementary func-
tions and the symmetric means of order k are Schur-concave functions.
Other families of Schur-convex functions are studied in [21, 22, 23,
24, 77].
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12 2. PRELIMINARIES ON MAJORIZATION THEORY

In [89] a class of analytic inequalities for Schur-convex functions
that are made of solutions of a second order nonlinear differential equa-
tion are studied. These analytic inequalities are used to infer some geo-
metric inequalities, such as isoperimetric inequality. Li and Trudinger
[49] consider a special class of inequalities for elementary symmetric
functions that are relevant to the study of partial differential equations
associated with curvature problems.

Recall here a classical result concerning the study of Schur-convexity
for the case of smooth functions. See [80].

Theorem 1. Let F (x) = F (x1, ..., xn) be a symmetric function with
continuous partial derivatives on In = I×I× ...×I, where I is an open
interval. Then F : In → R is Schur-convex if and only if the following
inequality

(0.1) (xi − xj)

(
∂F

∂xi

− ∂F

∂xj

)
≥ 0,

holds on In, for each i, j ∈ {1, .., n}. It is strictly Schur-convex if
inequality (0.1) is strict for xi �= xj, 1 ≤ i, j ≤ n. Any such function
F is Schur-concave if the inequality (0.1) is reversed.

In [75] and [77] we consider a class of Schur-concave functions with
some measure properties. The isoperimetric inequality and Brunn-
Minkowsky’s inequality for such kind of functions are presented. Ap-
plications in geometric programming and optimization theory are also
derived.

About 100 years ago, the properties concerning such notions as
length, area, volume, as well as the probability of events, were ab-
stracted under the banner of the word measure. We review the notion
of measure using this word in an unusual way. More exactly, we study
some measure properties of a special class of Schur-concave functions
which will be reveal via some discrete versions of isoperimetric inequal-
ity and Brunn-Minkowsky’s inequality.

We present a discrete version of isoperimetric inequality related to a
special class of Schur-concave functions. The reason we discuss about
isoperimetric inequality in the context of Schur-concave functions is
given by the well known property of every Schur-concave function F ,
which is the essential property of the volume measure,

(0.2) F (x1, ..., xn) ≤ F

(
x1 + ...+ xn

n
, ...,

x1 + ...+ xn

n

)
.

In other words, by using F as an area measure, the inequality (0.2) says
that from all polygons with n edges and the sum of all edges constant,
the regular polygon, with equal edges, has the biggest area.
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1. A discrete isoperimetric inequality

In this section we define some volume measures by using a fam-
ily of Schur-concave functions. Some discrete versions of isoperimetric
inequality and Brunn-Minkowsky’s inequality will confirm that our ap-
proach is correct. Recall here a well known result concerning Brunn-
Minkowski’s inequality for convex bodies, which are non-empty com-
pact, convex subsets of Rn.

Theorem 2. Let λ ∈ (0, 1) and let K, L be two convex bodies.
Then we have
(1.1)

(V oln((1− λ)k + λL))1/n ≥ (1− λ) (V oln(K))1/n + λ (V oln(L))
1/n ,

with equality when K and L are identically up to a translation.

We replace the volume measure V oln(K) by a Schur-concave func-
tion of the form Fn(x1, ..., xn) = f(x1) + ...+ f(xn), where f is a non-
negative concave function. In the rest of the paper, Fn will be called
the n-dimensional volume function.

Theorem 3. Let λ ∈ [0, 1]. Then for each nonnegative concave
function f we have

(Fn((1− λ)x+ λy))1/n ≥ (1−λ) (Fn(x))
1/n+λ (Fn(y))

1/n (x, y ∈ Rn),

where Fn(x1, ..., xn) = f(x1) + ...+ f(xn).

Proof. Let g(x1, ..., xn) = (x1 + ...+ xn)
1/n defined on Rn

+, which
is globally concave and nondecreasing in each variable. We need to
prove is the concavity of the function g(f(x1), ..., f(xn)), which holds
since we have a composing between a nondecreasing globally concave
function and another concave function. �

Let us consider a more difficult problem concerning the classical
isoperimetric inequality for convex bodies from RN .

Theorem 4. (See [59]) Let K be a convex subset from Rn and B
a closed ball from Rn. Then we have

(1.2)

(
V oln(K)

V oln(B)

) 1
n

≤
(
Sn−1(K)

Sn−1(B)

) 1
n−1

,

with equality if and only if K is a ball. Here, Sn−1(K) means the area
of the surface of a convex body K.

We replace the volume measure V oln with Fn, which is the corre-
sponding n-dimensional volume function. Notice that the well known


